

ENVISION2019

Boston

ENVISION2019

Expanding Zemax Capabilities, 3 example advanced macros and custom DIIs

John Ellis

John Ellis

President

- John Ellis founded Optics for Hire in 2002.
- OFH help clients research, design, prototype and commercialize imaging and illumination optical devices.
- Their team of 15 optical, mechanical and electronics engineers provide ray tracing, custom lens designs, complete opto-electronic/opto-mechanical systems and applied optics research.

Anatoli Trafimuk

Lead optical engineer

- Anatoli started his work in OFH in 2006 as optical designer
- He is the author of all Dlls and macros described in presentation
- Anatoli has a Ph.D. from Saint-Petersburg State University Information Technologies, Mechanic and Optics focused in Optics/Optical Sciences
- He has designed hundreds of illumination and imaging optical systems

Examples

Making a complex Zemax macro

 The problem statement of Optics Cross Section

- Why require custom macro?
- The solution of the problem
- Examples of using macro

- Why we need User Defined Objects?
- What was done by OFH

2 Using user defined objects in Zemax

• Examples and applications of UDO

- 3 User defined surface for imaging
- Why do we need User Defined Surfaces?
- Freeform solution with Bezier curves

Making a complex Zemax macro for an Optical Cross Section calculation

Optical cross section calculations

- OCS is a value which describes the maximum amount of optical flux reflected back to the source.
- Optical devices such as telescopes and cameras will return some of the optical flux back to the source, since it has optics that reflect some light.
- It is very useful in LIDAR and also Radar applications.
- Zemax doesn't provide built-in optical cross-section calculations

OPTICAL CROSS SECTION (OCS)

Definition of OCS:
 Intensity Leaving Sensor

 $\frac{\text{Intensity Leaving Sensor} \quad J}{\text{Irradiance Entering Sensor} \quad H} \quad \frac{(W/sr)}{(W/m^2)} = \frac{m^2}{sr}$

- Calculated Formula is Actually "Differential" Optical Cross Section Peak on-axis retroreflected signature
- For a Circular Mirror:

$$OCS = \frac{\rho^* \pi^{2*} D^4}{16 * \lambda^2}$$

Where: $\rho = \text{mirror reflectivity}$ D = mirror diameter (m) $\lambda = \text{wavelength (m)}$

For a Sensor:

(Worst Case:
Perfect Optics)
$$OCS = \frac{\rho^* T^{2*} \pi^{2*} D^4}{16 * \lambda^2}$$

 $T = Single-pass optical \\ transmission at wavelength \lambda$

Why use a custom macro?

- The contribution to OCS from the lenses themselves is ignored in previous formula
- A tool is need to calculate the OCS contribution from the lenses.
- Custom Zemax macro is ideal. We can control the lens data as needed, with ZPL
- Compared to ZOS API a macro is simpler for the user.

The solution

- The macro stores the initial optical system. Then one by one elements are removed from the system, replaced surfaces with mirrors (mirror reflectively created by Zemax or by hand), made in sequence as elements added. And calculate the OSC of each reduced element.
- Macro uses previous formula of OSC and alternative calculation based on the method described in article "A Paraxial Approach to the Estimation of Optical Cross Section and Optical Gain" by Howard V Kennedy.
- ZPL macro contains 612 lines of optimized code, which provides main calculations and predictable error handling.
- The result is table of OCS values for each lens surface and list of some important parameters from Kennedy method.

े 🖗 🖬 🖶 । 🔝 🤊 🤇	🗢 🍣 🕴 🖬] •						Zem	ax OpticStud	lio 19.8 BETA	A Premium(7) - L1	107091 - 1 Do	uble Gauss 2/	8 degree field.zn	лх				_	Ē
Setup Analyze Opt	imize Tol	erance l	ibraries P	art Designe	r Prog	ramming Help													Search	
Edit/Run Refresh List Macro	Macro Help A	User nalyses • E	User Ir xtensions • E	teractive extension	ZOS-API Help •	C# C++ I	MATLAB Py	thon Exter Liss	nsion et •											
plorer (7)	– q	20	-AFINET AP	plications		203-AFINET AP	Silcation but	Iders Exter												_
None •																				
re		-																		
igtns nent																				
tion													: Layout							· ·
e 📗 Lens Data						1					▼ - □ ×	(v) :	Settings 💝	i 🗎 🖶 🖊		H 🗞 🍳 🔒 🗄	🗄 📹 🕒 🛛 Line Thi	ickness 🔹 🔞		
Update: None •	C C + O	• 🛯 🕹		₽ 0 ·	<u> </u>) 📃 🕇 🕶 🔿 🌘)	-												
Surface 0 Proper	ties < >					Configuration	1/1 🔇	>												
Surface Type	Commen	t Radius	Thickness	Material	Coating	Clear Semi-Dia	hip Zone	Mech Semi-Dia	Conic 1	TCF x 1F-6										
0 OBJECT Standard	•	Infinity	Infinity	materia	couring	0.000	0.000	0.000	0.000	0.000										
1 Standard	•	Infinity	10.000			16.665 U	0.000	16.665	0.000	0.000	(I I I I I I I I I I I I I I I I I I I									
2 (aper) Standard	•	54.153	8.747	SK2	AR	16.665 U	0.000	16.665	0.000	-										
3 (aper) Standard	•	152.522	0.500		AR	15.829 U	0.000	16.665	0.000	0.000										
4 (aper) Standard	•	35.951	14.000	SK16	AR	15.420 U	0.000	15.420	0.000	-										
5 (aper) Standard	•	Infinity	3.777	F5		12.719 U	0.000	15.420	0.000	-	(17	1				
6 (aper) Standard	•	22.270	14.253		AR	10.985 U	0.000	15.420	0.000	0.000			_							•
7 STOP Standard	•	Infinity	12.428			9.968 U	0.000	9.968	0.000	0.000				1 1						
8 (aper) Standard	-	-25.685	3.777	F5	AR	9.000 U	0.000	10.237	0.000	-										
9 (aper) Standard	•	-26.980	0.500	5610	AP	9,450 U	0.000	10.237	0.000	-			L							
11 (aper) Standard	•	196.417	6.858	SK16	AR	10.144 U	0.000	10.144	0.000	-										
12 (aper) Standard	•	-67.148	57.315		AR	9.874 U	0.000	10.144	0.000	0.000	(
13 IMAGE Standard	•	Infinity	-			0.017 U	0.000	0.017	0.000	0.000										
																	••••••••••••••••••••••••••••••••••••••	50 mm		
																	Layout			
												DC	UBLE GAUSS	5						
												9/ To	18/2019 otal Axial	Length: 142.	98842 mm					
																		1 Double G	auss 28 dagree 1	i a
																		Con	figuration 1 of	1
													Graph (Classic				1		
																			0	
																			10000	20
																		in 13	reer	ん
																		7		

DOUBLE GAUSS

os 🛛 💾 🞑 🔚 🐁 🛛 🔊	🤊 ኛ 🗢 🖉 🗆 🚅	7-				Zemax Oj	oticStudio 18.9	Premium - 22422	- 1 Double Gau	ss 28 degree field.	.zmx					- 0	\times
File Setup Analyze	Optimize Tolerar	nce Libraries Part	Designer Program	mming Help											Sea	rch	
System Project Scale Explorer Preferences Lens	C Sequential	Lens Non-Sequen	itial Field Data Cr Editor	oss-Section View	Shaded Street Model	System Performance	Bring To Front • Option	Dock New Windows	Make M Thermal Con	1ake Add All jugate Data	MC Editor Next Previous						
System	Mode	Editors	s Fa	System Vie	wers 🖓	Diagnostics	Window	Control		Configuration							
System Explorer 🕜	▼ #																
Update: None 🕶																	
 Fields Wavelengths 	€ 4: S	haded Model tings 💈 🗈 🔝 🖶 🗸		۹ <u>♦</u> • <mark>人</mark> ⊡	💠 Q, 😰 XIY	y yız xız 💫 🛞 🚺	▼ - □ × Solid • Ⅲ•	2: Text Vie	wer 🗢 🗈 🔝 🖶	/ 🗆 / 🗕	A 🔒 🖀 😂	3 x 4 👻 Standard 👻				* -	x
 Environment Polarization Advanced Ray Aiming Material Catalogs 	<u>~</u> =	🕯 🔛 🖀 🕲 Line Thio	:kness 🔻 🕑					Executin Lens fil Used wav	ename 1 D velength Ø	\Administra ouble Gauss .4861 micro	tor\Documents\ 28 degree fie meters	Zemax\MACROS\C ld.zmx	cs5.3_kenn.zp	1.			^
 Title/Notes Files Units Cost Estimator 								Surface 2 3 4 5	<pre>OCS Kenn 3.2468E- 6.1622E- 3.5140E- 1.8030E-</pre>	edy xs 05 3.3691E 03 2.8207E 05 3.0979E 05 3.3656E	lambda(+04 4.8610E-0 +03 4.8610E-0 +04 4.8610E-0 +04 4.8610E-0	mt) Apupil(s 7 8.7249E-04 7 8.7249E-04 7 8.7249E-04 7 8.7249E-04 7 8.7249E-04	<pre>q. mt) is 3.1281E-01 1.7163E-02 3.1118E-01 2.5356E-01</pre>	ys 1.6665E-02 1.5820E-02 1.5404E-02 1.2675E-02	ns 1.0000E+00 1.6074E+00 1.0000E+00 1.6204E+00	tau_s 1.0000E+00 9.8856E-01 9.7317E-01 9.6241E-01	5
								6 7 8 9 10 11 12 13 13 footp Predicte Summed C Summed C	4.3018E- 0.0000E+ 4.7065E- 5.2694E- 1.0661E- 5.8361E- 9.7213E- 0.0000E+ 0.00000E+ 0.00000E+ d image pl CS without	05 2.9212E 00 0 05 2.5756E 05 8.3921E 04 2.0834E 02 7.3996E 05 1.9859E 00 0 0 0.1 ane OCS (id image plane O	+04 4.8610E-0 +04 4.8610E-0 +03 4.8610E-0 +04 4.8610E-0 +04 4.8610E-0 0000E+00 eal optics) 0 e OCS 1.5113E CS 1.5113E	7 8.7249E-04 7 8.7249E-04 7 8.7249E-04 7 8.7249E-04 7 8.7249E-04 7 8.7249E-04 7 8.7249E-04	2.5774E-01 4.4519E-01 8.6006E-02 1.9467E-01 1.1302E-02 1.9216E-01	1.0937E-02 8.9515E-03 9.4160E-03 1.0219E-02 1.0131E-02 9.8685E-03	1.6034E+00 1.6034E+00 1.6204E+00 1.0000E+00 1.6204E+00	9.5582E-01 9.4390E-01 9.3363E-01 9.3240E-01 9.1699E-01 9.0618E-01	
		Z		• • •	• 1 50 m	ım											~
	6 (ape	er) Standard 🔻	22.270	14.253	A	R 10.985 U	0.000	13.720	0.000	0.000							
	7 STO	P Standard	Infinity	12.428	EE	9.968 U	0.000	9.968	0.000	0.000							
	o (ape	er) Standard 🔻	-25.005	10.834	SK16	9.456 U	0.000	10.237	0.000								
	10 (ape	er) Standard 🔻	-36.980	0.500	A	R 10.237 U	0.000	10.237	0.000	0.000							
	11 (ape	er) Standard 🔻	196.417	6.858	SK16 A	R 10.144 U	0.000	10.144	0.000	-							
	12 (ape	er) Standard 🔻	-67.148	57.315	A	.R 9.874 U	0.000	10.144	0.000	0.000							
	13 IMA	.GE Standard 🔻	Infinity	-		0.017 U	0.000	0.017	0.000	0.000							

I I II	🖶 🔝 🤊 🦿 🗳 🍃	_ _	Zemax	max OpticStudio 18.9 Premium - 22422 - 7 Compact Telephoto.ZMX — 📋	$1 \times$
File Setup A	Analyze Optimize	Tolerance Libraries Part Designer Programming Hel	p	Search	
Cross-Section System Viewe	Shaded Shaded rers rs	Aberrations Wavefront PSF MTF RMS Enclosed Energy Extende	d Scene ysis • Physical Beam File Gaussian Optics Viewer Beams • Laser and Fibers	Image: Strate in the coupling of the coupling	
System Explorer 🕐	-	•			
Aperture		-			
 Fields 				2: Text Viewer	× -
Wavelengths				\odot Settings 2° \square \square \land \square \land \square \land \square \land \square \land \square	
 Environment Polarization 		💽 3: Shaded Model	- - □ ×	Executing C:\Users\Administrator\Documents\Zemax\MACROS\Ocs5.3_kenn.zp1.	^
 Polarization Advanced Ray Aiming Material Catalogs Title/Notes Files Units Cost Estima Cost Esti	ens Data Update: None • ① ① ④ Surface O Properties DBJECT Standard • Standard • aper) Standard •	Settings Solid + I + A H	 A DE XIV VIZ XIZ O O O A DE XIV VIZ XIZ O O A DE XIV VIZ XIZ O A DE XIV VI	Lens filename 7 Compact Telephoto.ZMX Used wavelength 0.5876 micrometers Surface OCS Kennedy xs lambda(mt) Apupil(sq. mt) is ys ns tau_s 2 7.6337E-05 4.5925E+04 5.8760E-07 1.0010E-03 4.8806E-01 1.7600E-02 1.0000E+00 1.0000E+00 3 3.1575E-04 2.1403E+04 5.8760E-07 1.0010E-03 1.4318E-01 1.7336E-02 1.6127E+00 9.4452E-01 4 3.4050E-04 1.9491E+04 5.8760E-07 1.0010E-03 2.2737E-01 1.6034E-02 1.6000E+00 8.9175E-01 5 1.8019E-04 2.5922E+04 5.8760E-07 1.0010E-03 2.2218E-01 1.2915E-02 1.0000E+00 8.9175E-01 6 1.1272E-04 3.514E+04 5.8760E-07 1.0010E-03 4.8656E-01 1.2919E-02 1.0000E+00 7.9220E-01 7 1.9536E-04 2.3866E+04 5.8760E-07 1.0010E-03 2.4426E-01 1.0642E-02 1.7174E+00 7.3680E-01 8 0.0000E+00 0 9 5.5375E-02 1.3397E+03 5.8760E-07 1.0010E-03 3.3526E-02 7.4740E-03 1.0000E+00 6.8475E-01 11 0.0000E+00 0 9 11 footpr 0.00000 0.0000E+00 9 Predicted image plane OCS (ideal optics) 0.0000E+00 Summed OCS with image plane OCS 1.8458E-02 Summed OCS with image plane OCS 1.8458E-02	
					>

User defined objects in Zemax for nonimaging optical systems design

Why use user defined objects?

- Provide built-in fully integrated, simple solution for efficient design of freeform based illumination system in nonsequential mode.
- We use simplified Bezier curves (up to 4) to create surfaces and solid objects
- User defined objects is easy way to describe the lenses based on Bezier curves.
- UDO behaves like built-in object, has fast raytrace and fully integrated in optimization.

What was done by OFH

- Created 20+ freeform UDO to describe illumination systems natively in Zemax. All Dlls was written with Microsoft Visual Studio software
- All UDO has parameters for optimization its shape, control the geometry, size and special features like faceting, fillets etc.
- Created set of ZPL macro which allow scale the UDO, change their parameters, change surface properties, control the slope, control the shape and much more.
- Also there are several macro to create direct CNC machine command file for some types of UDO.

What is Bezier curve and why we use it

Bezier curve is a parametric curve used in computer graphics and related fields. The curve, which is related to the Bernstein polynomial, is named after Pierre Bezier, who used it in the 1960s for designing curves for the bodywork of Renault cars. Other uses include the design of computer fonts and animation.

The curve is simple to use. It controlled by control points set, which are just a set of numbers. Point not lie on the curve except start and end point. This is best for build freeform optical surfaces.

4-point Bezier curve.

The simplified Bezier curve parametric equation

$$Bx(u) = (Px_n - Px_0)u, u \in [0,1]$$

$$By(u) = \sum_{i=0}^n (n!u^i(1-u)^{n-i} / (i!(n-i)!))Py_i, u \in [0,1], i = 0..n$$
- Simplified

- Simplified Bezier curve.

The feature of that curve representation is that X control points equally spaced along the axis. So we use only parametrization of Y part of curve. This allow us more simple calculations while create complex objects form that curves. The raytrace for surfaces based on that curve is 30% faster rather than usual Bezier curves and up to 60% faster if use more general NURB representation.

And we remain almost all flexibility of freeform and use less variables.

The simplified polar Bezier curve equation

$$C(t) = \begin{cases} \rho(t) = 1 / \sum_{i=0}^{n} c_i A_{i,n}(t), t \in [-\Delta, \Delta], 2n\Delta < \pi \\ \theta(t) = nt \end{cases}$$

•

 Simplified polar Bezier curve.

$$A_{i,n} = \frac{1}{\sin(2\Delta)^n} \frac{n!}{i!(n-i)!} \sin^{n-i}(\Delta - t) \sin^i(\Delta + t) - \text{Trigonometric Bernstein}$$
polynomial.

The curve is same as previous, but defined in polar coordinates

Some important surfaces created from Bezier curves

- 3 Surface of revolution of simplified Bezier curve (TIR)
- Surface of revolution of simplified Bezier curve along simplified polar Bezier curve (Type V beam shaping)
- Surface of revolution of 4 simplified Bezier curve along simplified polar Bezier curve. Each independent curve describe the quarter of 360-degree surface. Curves use same X parametrization while Y are different.
- Extrude the simplified Bezier curve along another simplified Bezier curve

Step1: Model surface equations in MapleV5

Maple 2018 - [test2.mws - [Server 1]]	- 0 ×
월 File Edit View Insert Format Spreadsheet Window Help [] (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	_ & ×
P Maple Plot V Tres New Roman V 12 V B I U E E I III	
<pre>> restart;</pre>	 -
> A := [[0, 1], [1, 3], [2, 4], [3, 5], [4, 4.5], [5, 5], [6, 5.4], [7, 5.6]]; N := 7	
$\begin{bmatrix} > Bx := (t, n, sq) \to 7 t; By := (t, n, sq) \to \sum_{i=0}^{n} sq_{i+1} \frac{n! t^{i} (1-t)^{(n-i)}}{i! (n-i)!} \end{bmatrix}$	
> $plot([By(t, N, A), Bx(t, N, A), t = 01])$	
i > simplify(Bx(t, N, A))	
$Fx := (u, v) \rightarrow By(u, N, A) \sin(v); Fy := (u, v) \rightarrow By(u, N, A) \cos(v); Fz := (u, v) \rightarrow Bx(u, N, A)$	
>	
$ > \frac{\partial}{\partial v} Fx(u, v); \frac{\partial}{\partial v} Fy(u, v); \frac{\partial}{\partial v} Fz(u, v) $	
$ > Lx := t \to 5 - 1.0 t; Ly := t \to 10e-1 t; Lz := t \to 3 + .5 t$	
$ > \frac{\partial}{\partial t} (\operatorname{Fx}(u, v) - \operatorname{Lx}(t)); \frac{\partial}{\partial t} (\operatorname{Fy}(u, v) - \operatorname{Ly}(t)); \frac{\partial}{\partial t} (\operatorname{Fz}(u, v) - \operatorname{Lxz}(t)) $	
> $P1 := \text{plot3d}([Fx(u, v), Fy(u, v), Fz(u, v)], u = 0 1, v = 0 2 \pi, style = patchnogrid)$	
> $P2 := \text{plot3d}([\text{Lx}(t), \text{Ly}(t), \text{Lz}(t)], t = 0 12, y = 1 2)$	
> plots _{display} (P1, P2)	
> #NEWTON METHOD	
$> J := V \rightarrow \text{VectorCalculus}_{Jacobian}(V, [u, v, t])$	
$> X := \operatorname{Vector}([u, v, t]); XK := X; XK1 := X$	
$FF := X \rightarrow \text{Vector}([Fx(X_1, X_2) - Lx(X_3), Fy(X_1, X_2) - Ly(X_3), Fz(X_1, X_2) - Lz(X_3)])$	
> LinearAlgebra _{MatrixInverse} ($J(FF(X))$)	
> xk:=[1,1,1];	
> for g to 3 do	
$xk1 := (x, y, z) \rightarrow subs(u = x, v = y, t = z, XK - LinearAlgebra_{MatrixVectorMultiply}(LinearAlgebra_{MatrixInverse}(J(FF(XK))), FF(XK)));$	
$evalf(xk1(xk_1, xk_2, xk_3));$	
	Time: 0.2s Bytes: 40.4M Available: 2.00G

Step2: Create C++ code for surface shape and raytracing and compile it into Dll

🕶 Bezier_E_FRzoom - Microsoft Visual Studio (Администратор)					-	- 0 ×
Файл Правка Вид Проект Построение Отладка Рабочая гр	иппа Данные Сервис Арх	итектура Тест Анализ Окно Спра	вка			
1 🔂 • 🖼 • 🥔 🛃 🏈 🐰 ዄ 🛍 🕫 • 🖓 • 斗 🕨 🥫	elease 🔻 x64	👻 🛛 🛃 🖉	- 💀 🕾 💀 🛠 🖬 🗳 🖸 - 📮			
□ 22 22 24 16 詳 # □ 22 □ 22 24 24 28 34 36 36 36 36 36 36 36 36 36 36 36 36 36	Q =					
Bezier_E_FRzoom.c ×					• Обозреватель р	ешений 👻 🕂 🗙
(Глобальная область)			✓ ^a UserObjectDefinition(double * data, double * tri_list)		। 🕒 🔊 🗈 🕯	à
Image: Second	<pre>// Start Newton //intersection r: interval=(za[N]-: Xk[1]=fabs((z-za] Xk[2]=atan2f(y,x Xk[3]=interval/Nu //begin for (k=1;k<20;k+-{</pre>	<pre>method for finding distan ay and surface of Bezier r za[1]/(Nr); [1]/(za[N]-za[1])); //Sta ;//Starting point rotate r; //Starting point distan +) e at point Xk ==cos(Xk[2]);) //]*xa[j+1]*Power(Xk[1],j)*P ++)</pre>	<pre>se to evolutin rting point parameter Bezier parameter se to the actual surface ower(1-Xk[1],N-j-1);</pre>	- 4	 Pewerwe 'Bzi' Bezier, E, FR: Header Header Bezier, E, FR: Besource Fit Boore Fite Besource Fite Berning State Berning State Cookcras UserObjectDefin Fite Name Fite Fite Islance Islance<td> с. E. FRZOOM* (проб зоот я les в RZOOMC ависимости </td>	 с. E. FRZOOM* (проб зоот я les в RZOOMC ависимости
Courses oursfors 💷 Russon					C++	
и вывод						
Готово				Строка 515 Столбе	щ 18 Знак б	ВСТ

Step3: Import DII in Zemax as User Defined Object

TIR lens designed with UDO in Zemax

The TIR lens user object in wireframe view

The optimized light spot shown in false color

Example of surface of revolution of Bezier curve along the polar Bezier curve

$$\mathbf{F}(u,v) = \begin{cases} F_x(u,v) = \sqrt{B_y(u)\rho(v)}\cos(\theta(v)) \\ F_y(u,v) = \sqrt{B_y(u)\rho(v)}\sin(\theta(v)), u \in [0,1], v \in [-\pi/4, \pi/4] \\ F_z(u,v) = B_x(u) \end{cases}$$

RXI lens designed with UDO in Zemax

The RXI lens object in wireframe view

The optimized true color light spot

130 degree angle uniform rectangle spot lens designed with UDO in Zemax

The lens in wireframe view mode

The rectangular spot in true color

Type III streetlight lens designed with UDO in Zemax

The streetlight lens

The luminous intensity polar map in false color

Lightpipe designed with UDO in Zemax

The lightpipe with rays

The lightpipe

User defined surface for an imaging purposes

Why we need user defined surfaces?

- Some imaging systems require unusual mathematics to correct aberrations, especially in off-axis and tilted optical paths.
- Zemax provides the possibility to use User Defined surfaces for sequential raytracing
- It is differs from User Defined object, sequential mode uses surfaces not objects.

The system

The scanning system contains two fold mirrors and the scan lens, display application

The distortion problem

 The laser scanning system has some slightly distorted field points in image plane

SCALE: 520.0000 MILLIMETERS

Freeform surface in Zemax sequential mode

- To describe freeform we can use geometrical mean of simplified Bezier curves along X and Y directions.
- Surface shape can be local changed over the aperture by parameters
- This surface just created with User Defined Surface in Zemax sequential mode

The surface sample

The solution

- Using freeform plate between lens and mirrors we can correct that distortion
- With using 7x7 control point grid of Bezier surface we obtain well corrected distortion

SCALE: 520.0000 MILLIMETERS

"Using User Defined Object, Macros and User Defined surface greatly expand Zemax capabilities. And with use User defined sources, scatter functions, and coatings Zemax is most powerful and flexible optical design software in the world"

Download the slides at <u>www.opticsforhire.com/envision</u> questions: john@opticsforhire.com

